
Analysis of Supply Chain Resilience

With Agent-Based Modeling

Ethan Guo

Northwestern University, Evanston, IL

60201

EthanGuo2026@u.northwestern.edu

June 3, 2024

Abstract

Analyzing resilience and determining points of efficiency regarding resilience and

costs is vital for businesses to determine optimal logistics configurations. This

paper aims to analyze a wide range of system configurations, testing each across

simulated environmental stresses with NetLogo Multi-Agent Modeling. Calculated

results suggest a correlation of moderate strength between the number of network

nodes in a given system and resiliency values adjusted for system output, with

a corresponding p−value of 2.845 ∗ 10−10 for linear regression slope, suggesting

a statistically significant difference between the slope and 0. However, it should

be noted that the data suggest there is no linear correlation between number of

network nodes and raw resiliency.

Keywords: Agent-Based Modeling; Supply Chain Resilience; Linear Regression; Data

Abstraction

1



1 Introduction

As retailers and third party logistics becomes more and more commonplace and as global-

ization continues to increase, the environment in which supply chains and their derivatives

find themself becomes increasingly uncertain. As a result, more than ever, it is worth-

while to analyze supply chain resiliency for the purposes of minimizing unnecessary costs

while maximizing resilience to external phenomena and stress.

From Wieland, A. and Durach, C.F. (2121) [2], supply chain resilience is defined as a

supply chain network’s ability to be able to respond and adapt to external phenomena,

whether it be inclement weather or road closures. In other words, it is represented both

as a system’s ability to adapt and transform as well as a system’s stability. This study

primarily focuses on the latter; the systems modeled do not have the capability to trans-

form, due to their nature of being simple views of supply chain systems.

NetLogo[1] Agent-Based Modeling (ABM) serves as an effective modeling technique be-

cause it effectively captures the spatial aspect to supply chain resilience in an object-

oriented manner. Mathematical models experience much difficulty in achieving a similar

result, and do not carry the same capability in parameter manipulation and experimental

data collection that ABM carries.

This study uses ABM to conduct experiments simulating environmental stresses on a

basic supply chain model to draw conclusions regarding the key question of how the

number of network nodes / configuration of a network can affect the system resiliency.

From S. Chen, K. Tai and Z. Li (2116)[3], the LeCas Modeling Tool, an ABM, is con-

sidered one of the most effective methods of simulating a series of interconnected, au-

tonomous agents to produce models that accurately reflect the behavior of a chain system.

Although this study does analyze pure supply chain resiliency and utilizes different met-

rics than those used in S. Chen, K. Tai and Z. Li (2116), ABM was deemed a good fit

for the same reasons.

Consequently, this paper is composed in the following manner. Firstly, the method-

ology and limitations in designing such a model is described in Methodology (II), along

with data collection and processing methods. Finally, results will be analyzed and sum-

marized in Results (III), and then interpreted in Conclusions (IV). Citations, including

those for data processing methods and software used in both modeling and calculation,

can be found at the end.

2



2 Agent Based Model Experimental Setup

2.1 Agent-Based Modeling

NetLogo Agent-Based Modeling software[1] adopted in the study is an ABM tool that

allows for creation of a number of agents to produce models. All 3, used in this study,

consist of patches, turtles, and links. Patches are the tiled agents that comprise the

“floor” of the model on which turtles, moving agents, can traverse. Finally, links serve

as virtual connections between agents to denote special connections that do not apply

to the wider agentset of all turtles or all patches. The model runs on a tick time basis,

meaning that actions are carried out in discrete steps rather than in continuous time.

2.2 Model Design

By necessity, to model supply chain resilience, two key components must be modeled; the

supply chain itself, and the external stress.

Similar to that in S. Huang, S. Sheoran, and H. Keskar(2105)[7] and in S. Chen, K. Tai

and Z. Li (2116)[3], a Markov-based model was chosen to demonstrate product flow across

network nodes. For the model to be capable of drawing conclusions between different sys-

tem setups, the net input and output values were to be equal across all experimental trials.

The supply chain model was initially arbitrarily configured to have two tiers of manufac-

turing centers, one tier each of distribution centers and primary producers, and a variable

amount of destination points. However, through heuristic analysis of the model’s initial

unprocessed outputs as well as through discussion with M. Watson, Undergraduate Pro-

fessor of Supply Chain Modeling at Northwestern University, this model was determined

to be capable of providing results varied enough to draw statistical inference from.

The Markov model has one-way product flow from left to right, utilizing arcs as op-

posed to edges to simulate this one-way flow. Consequently, by necessity, the model must

have a start point and end point. The starting point, primary producers, must generate

raw materials for use by the manufacturing centers and serve as the base of the supply

chain model. Although traditional supply chain models implement a demand system as

a metric to examine the efficiency of a given system, because this study aims to compare

a system to itself over a range of external stresses, a demand system was not implemented.

The chosen external stressor for this model is spatially-biased weather, modeled through

3



diffusion techniques built-in to NetLogo’s ABM Software. External stressor modeling is

described in greater detail in section 2.4.

2.3 Model Setup and Rules

Firstly, the supply chain model was configured to have five custom defined agent sub-

sets. These consist of primary producers, manufacturing centers, distribution centers,

destinations, and deliverers. The first four subsets are stationary turtles for purposes

of inventory management and product flow, while the fifth subset, deliverers, are turtles

defined for the carrying of products to and from source points and destinations.

Primary producers generate raw materials according to a user-defined parameter (de-

noted by raw-regeneration-rate in Fig. 1) that dictates how many raw materials each

producer generates on each tick or timestep. It should be noted that primary producers’

net raw material generation remains the same regardless of how many primary producers

there are for consistency between systems. Additionally, primary producers are given a

field of farm-capacity to limit how many raw materials primary producers can carry at a

given time.

Manufacturing centers, the next tier in the supply chain, are given a field for prod-

uct manufacturing rate, a number randomly generated between 30 and 60. In addition,

each manufacturing center is given fields for both available raw materials (input), and

available inventory (output of manufactured product). Both of these fields are once again

subject to an inventory capacity field. Manufacturing centers comprise two tiers in the

final experimental setup as depicted in Fig. 1. Finally, manufacturing is also subject

to the manufacturing-conversion-rate, the ratio of raw materials processed to the

number of products created.

Distribution centers do not process products, but instead serve as network nodes that act

as an interface between destinations and manufacturing centers. In addition to variables

that assign each distribution center a spatial range of supported destinations, distribution

centers are assigned an available inventory and inventory capacity field as well to mirror

real world warehouse networks.

Destinations serve as metric gatherers by tracking how many deliveries they receive.

Finally, deliverers are the traveling agents that traverse the world to deliver and pick

up products from tier to tier. Each deliverer is assigned a home point and a target point

from which to pick up and drop off products, respectively. Consequently, each of these

4



points are assigned with unique values to each deliverer. Each deliverer is also given a

carrying capacity, base traveling speed (denoted by deliverer-speed in Fig. 1), and a

direction field for tracking which direction to travel.

The number of each of these agents can be determined by the user, denoted by num-

supply-hubs(total number of manufacturing centers), num-tier-0-hubs(number of tier

0 manufacturing centers), num-dest(number of destinations), and num-dist-centers(number

of distribution centers). However, the number of destinations and primary producers are

kept at 30 and 1.5 ∗ num− tier − 0− hubs, respectively.

Fig. 1: Initial setup and first 400 ticks of running model with display parameters

2.4 Modeling Environmental Stress

Modeling environmental stress is done on a spatial basis. NetLogo’s diffuse command

serves as a tile-based analog similar to Gaussian diffusion, which creates environmental

noise that can be used to model weather[6], and is the primary stressor modeled in this

study. Patches, the tiled floor of the world, are assigned a traversability value based on

the influence parameter (100− influence), and these values are then diffused according

to Gaussian diffusion across the world to achieve a simulation of weather’s effect on a

wide area. In Fig. 1, darker green patches represent areas with a lower traversability,

and vice versa. The traversability field affects a number of processes in the supply chain.

Manufacturing centers’ manufacturing rate is modified using the traversability value

5



of the patch on which they sit in the following formula.

Processing Efficiency = (1− influence

100
)2 ∗ manufacturing-rate ∗ traversability

1.5

Additionally, on each tick, each deliverer’s forwards travel distance is determined by

the traversability value of the patch they are currently on according to the following for-

mula.

Speed =
deliverer-speed ∗ traversability

1.5

2.5 Experimental Parameter Selection

Initial constants and parameters, including num-dest, 1.5 in the above formulas, and

deliverer-speed were chosen through heuristic analysis. With the final experimental

setup, parameters were changed until the best-performing model, with 10 distribution

centers and 5 manufacturing centers of each tier, could perform at capacity without

inventory bottlenecks at any location. With this setup, the ceiling is removed for perfor-

mance (assuming that introduction of influence can only negatively impact system per-

formance). However, it proved to be infeasible to remove the performance floor through

heuristic analysis, and concessions were made to accuracy described in section 3.

Fig. 2: Diagnostic

graphs

The NetLogo model contains plots for monitoring inventory

bottlenecks for diagnostic purposes such as the aforementioned

process of determining equation constants and set parameters.

An example of the final experimental configuration’s resultant

graphs can be seen in Fig. 2, whereupon each agent’s in-

ventories reached an equilibrium steady state between their

inventory floors and ceilings, effectively functioning at capac-

ity.

6



3 Data Collection Methodology

3.1 BehaviorSpace

BehaviorSpace is an experimental data collection tool built into NetLogo that allows users

to simulate experiments over varied parameter values with specified startup conditions,

until an end condition is met. For the purposes of this experiment, BehaviorSpace was

used to vary over influence values, ranging from 0 to 100. Due to the computational

limitations, values were varied in steps of 5 from 0 to 100 to preserve a high degree of

information while greatly reducing the dimensionality of data that would be produced,

allowing for easier data processing and storage.

To arrive at different system configurations, the number of manufacturing and distri-

bution centers were varied, while maintaining the number of destinations as well as net

input of raw materials as described in section 2.1. This way, although the “hidden layers”

of the supply chain are varied, the net input and output conditions remain the same for

all systems to allow for output comparison between different systems. BehaviorSpace was

run at 30 iterations for each value of influence, resulting in 630 total runs for each system

configuration, which were determined below.

3.2 System Configuration Selection

Due to the nature of the model, the number of potential BehaviorSpace iterations is

determined by the following formula, accounting for all possible configurations of manu-

facturing and distribution centers, as well as influence values.

10 ∗
9∑

n=1

(
n

1

)
∗ 630 = 6300 ∗

9∑
n=1

n!

(n− 1)!
= 283500 (1)

To pare down the number of data points, an algorithm was designed in Python to

deterministically generate configurations starting with a preset number of destination cen-

ters which were ranged from 1 to 10. From this algorithm, the data were processed via

Principal Component Analysis to reduce the 450 configurations to 50, retaining roughly

90% information content.

7



Each of these configurations was then passed into BehaviorSpace for manual data collec-

tion. Data were then written into CSV files by NetLogo.

3.3 Data Collection

The primary metric gathered in BehaviorSpace trials was the average fulfillment to each

destination per 100 ticks, or timesteps. This value is re-calculated every 100 ticks, to

generate both a discrete graph and a running graph to track the value. Because the run-

ning graph matched the discrete graph to a high degree as shown in Fig. 3, the running

graph’s value was chosen as the metric gathered due to ease of collection.

Fig 3: Average

Delivery Rate graph

The discrete graph, penned in black, better highlights small

scale swings in delivery rates and smaller scale trends,

while the global average, penned in red, averages across

all time passed to produce a more consistent value and

smoother graph that reflects the aggregate of all discrete

changes.

Across the BehaviorSpace trials, for each given system, 30 deliv-

ery rates were calculated for each influence level from 0-100 in

steps of 5, generating 630 data points for each system. To further collapse this data, the

average for each influence level was taken to give an array of 21 average delivery rates

for each system configuration. The purpose of taking the average is to generate a graph

that describes how the system’s performance changes as you increase the external stress.

Through initial testing as well, it was discovered that given the random nature of Gaus-

sian Diffusion in model setup, outliers can result despite the controlled experimental

environment. To counter this, averages were taken to decrease the effects of these out-

liers.

3.4 Data Processing

Data Processing was primarily done in Python. CSV outputs from BehaviorSpace were

read to process data, assign scores, and perform all data processing calculations.

Because each system has inherent differences in their fulfillment averages even without

influence, the data for each array of 21 delivery rates was normalized with respect to

the average delivery rate measured without any external influence. The normalization

allows for resultant measurements to represent the performance of the system strictly as

a dependent variable of influence, independent of their baseline performance.

8



Using these 21 delivery rates, a graph can be generated plotting relative average delivery

rate over influence. Some examples are shown in Fig. 4 below.

Fig. 4: L: Resilience Graph for 8 t1, 2 t0, and 4 dist. R: Resilience Graph for 5 t1, 5

t0, and 10 dist. Generated via matplotlib.pyplot

Qualitative analysis of the two graphs can yield important information. In Fig. 4,

the leftmost resilience graph demonstrates a steep decline in Delivery Rate between

influence ∈ [50, 80] but quantitative analysis is required to generate data summaries.

Consequently, two initial metrics were chosen to abstract these graphs into ”resilience

factors”.

• Metric 1: Resilience Score

The area under the curve is traditionally given by
∫ 100

0
f(x)dx. However, due to

the discrete nature of the data, a trapezoidal approximation must be used, given by:

A(f(x)) =

∫ 100

0

f(x)dx ≈
21∑
k=1

f(xk−1) + f(xk)

2
∗ 5 (2)

where for each normalized array of 21 points f(x), where x1 denotes the first ele-

ment of the arrays. Note that 5 is substituted for the base of each trapezoid because

of the nature of the construction of the data arrays.

This provides a metric that can be used to compare and rank each system with

all other systems, allowing for macro analysis of all systems.

• Metric 2: Fréchet Distance

Fréchet distance is defined to be the infimum of the maximum over all reparam-

eterizations of functions A and B. In mathematical notation, Fréchet distance is

9



defined as

F (A,B) = inf
α,β

max
t∈[0,1]

{d(A(α(t)), B(β(t)))} (3)

where d is a function of distance, and α and β are reparameterizations.

For this study’s purposes, Fréchet distance was adapted for discrete data sets, and

was represented in python as the greatest difference between points in datasets cor-

responding to the same x value, influence. In mathematical notation, the discrete

Fréchet distance, as shown in T. Wylie and B. Zhu (2014)[8], is represented as

Fd(A,B) = inf
α:[1:m+n]→[0:m],β:[1:m+n]→[0:n]

max
t∈[1:m+n]

{d(A(α(t)), B(β(t)))} (4)

where m,n are the number of points in each array, or 21, in this case.

For the purposes of comparing resiliency graphs, the distance function chosen will

be the L2 Norm, or Euclidean Distance. This provides a metric that can be used

to compare two systems, but no more. Although a Fréchet adjacency matrix could

be generated, it was deemed better suited for direct comparisons as opposed to a

metric to rank graphs by.

During data collection, however, it was discovered that very low-performing systems,

that is systems with a relatively low performance in terms of non-normalized fulfillment

values, experienced almost no difference with or without stress, a sort of cushioning effect.

Through further analysis and consultation with experts, the reason was determined to be

because there was no room for the system to perform worse. As a result, a new metric

was created to account for this effect.

• Metric 3: Weighted Resilience Score

After system configurations were first tested for the best performing and lowest

performing systems, it was found that the averaged average fulfillment rates would

fall between values of 0.3 at the lowest and 9 at the highest. Through qualita-

tive analysis, it was determined that the cushioning effect was roughly exponential,

increasing rapidly as the performance decreased. Thus, to penalize the lower per-

forming systems, the following formula was used to calculate a weighted resilience

score with natural log as a penalty.

W (f(x)) =
21∑
k=1

f(xk−1) + f(xk)

2
∗ 5 + k ∗ ln (x1)0 (5)

10



where f(x) is the array of points, k is some penalty weight, and (x1)0 is the non-

normalized first value of each array f(x).

To determine a value for k, a first baseline was calculated to find penalties. Penal-

ties were determined to range from 30 for the worst performing systems to 0 at

the highest end. Combined with the averaged average fulfillment rates above, the

following calculations were done to determine k.

Pmin = −k ∗ ln 0.3 =⇒ 30 = −k ∗ ln 0.3 =⇒ k ≈ 25

Which, by plugging in to (4), gives the following final formula.

W (f(x)) =
21∑
k=1

f(xk−1) + f(xk)

2
∗ 5 + 25 ∗ ln (x1)0 (6)

This provides a metric that can be used to compare and rank each system to all

other systems taking into account both the cushioning effect as well as system

performance, a practical measure of system performance as a function of weighted

resilience.

Data was collected by running BehaviorSpace trials for each configuration, outputting 30

trial run average fulfillment rates for each influence level per configuration, resulting in

31500 data points.

Data points were averaged across influence values for each configuration, compressing

the data down to fifty 21 point arrays. Metrics 1 and 3 were gathered using (2) and (6)

implementations in python utilizing numpy and csv packages, and graphs were generated

via matplotlib.pyplot.

11



4 Results and Analysis

In results summary, Total Network Nodes is defined as the sum of the number of dis-

tribution centers and manufacturing centers as the number of destinations remains the

same, and the number of primary producers varies despite having the same net output.

Therefore, there is a maximum of 21 and minimum of 3.

4.1 Total Network Node Analysis

Fig. 5: Scatterplot plotting raw resilience scores against number of network nodes.

From initial analysis, there appears to be no correlation betwen the number of total

network nodes and the raw resilience score, which measure the system’s resilience as a

function of influence relative to its baseline performance. Using R[4] and visualization

tools[5] to conduct a statistical analysis of the data, the data suggest that there is no

linear correlation between the number of total network nodes and raw resilience score.

Additionally, testing for goodness of fit of the slope of the line of best fit denoted by

the equation in the bottom left yields a p-value of 0.8967. Because p = 0.8967 is greater

than α = 0.05, we fail to reject H0. Thus, the data suggest that the slope of the line of

best fit is 0.

Conducting polynomial regression tests, however, yields more interesting results. With a

R2 of 0.1372, the data suggest a weak correlation between the number of total network

12



nodes and the raw resilience scores, given by the following equation.

y = β0 + β1x+ β2x
2 = 102.48− 4.4587x+ 0.1842x2 (7)

Analyzing goodness of fit for β1 and β2 gives p-values of p1 = 0.0096 and p2 = 0.0089,

respectively. Because p1, p2 < α = 0.05, we reject H0 in both cases. Therefore, the data

suggest that both β1 and β2 are not 0.

One potential explanation for the shape of Fig. 5 is the cushioning effect aforemen-

tioned in section 3.4. The cushioning effect would result in a higher resilience score for

lower performing systems, while higher performing systems display a higher resilience

by nature, as they do not experience the cushioning effect. Consequently, it would be

expected for the graph to exhibit two maxima, one at both ends, as described by (7).

Fig. 6: Scatterplot plotting weighted resilience scores against number of network nodes.

A much clearer trend can be observed when plotting weighted resilience scores instead of

raw resilience scores as seen in Fig. 6. With an R2 of 0.5669, there is a moderate corre-

lation between the number of total network nodes and weighted resilience scores where

56.7% of the variance in weighted resilience score is explained by the number of network

nodes. Conducting linear regression analysis for the goodness of fit of the slope= 3.5045

gives a p-value of 2.845 ∗ 10−10 < α = 0.05 Therefore, we reject H0 and the data suggest

that the true slope is not 0.

By the nature of its construction, weighted resilience score considers the baseline per-

formance of each network by default. However, for the best performing models who

13



achieved a baseline performance of an averaged 9 deliveries a tick, the penalty function in

(6) actually gives a performance bump of up to 50, biasing systems that perform better

as well as penalizing systems that perform worse. As a result, these results should be

interpreted as a measure of practicality or system efficiency taking into account resilience,

as opposed to strictly a measurement of pure resilience.

From Fig. 5 and Fig. 6, systems with the highest and lowest number of network nodes

exhibit the greatest degree of resilience in a polynomial relationship of weak strength.

However, taking into account practicality and overall system performance with the same

net input and output conditions, higher network node count systems performed best both

in terms of net output as well as resilience in a linear relationship of moderate strength.

4.2 Individual Metric Analysis

Fig. 7: U: Scatterplot plotting raw resiliency

score against number of tier 0 manufacturing

centers L: Scatterplot plotting weighted

resiliency scores against number

A number of metrics were plotted against

raw resilience score to identify any po-

tential correlations. These metrics in-

cluded the number of tier 0 and tier

1 manufacturers, the number of dis-

tribution centers, and the ratio be-

tween tier 0 and tier 1 manufactur-

ers.

Interestingly, the metric with the great-

est correlation with raw resilience scores

was the number of tier 0 manufactur-

ers, and the metric with the greatest cor-

relation with weighted resilience scores

was the number of distributors. Plot-

ting these together yielded moderately

weak correlations of R2 = 0.2317 and

R2 = 0.3217. Through qualitative anal-

ysis, however, the graphs appear to peak

at #t0 ≈ 6 and dist ≈ 5 rather

than follow a strictly linear relation-

ship.

Further linear regression analysis for slope yields p-values of 0.0004017 and 0.0000175

for the upper and lower graphs, respectively. With p = 0.0004017, 0.0000175 < α = 0.05,

we reject H0 in both cases. Thus, the data suggest that the slopes are not 0.

14



Fig. 8: Depiction of Fréchet distance between second highest and lowest raw resiliency score

graphs generated via MATLAB

The lowest performing configuration in terms of raw resilience score consisted of 7 dis-

tribution center, 8 tier 0 manufacturing centers, and 1 tier 1 manufacturing center. The

highest performing configuration consisted of 1 each of distribution centers, tier 0, and

tier 1 manufacturing centers. Between all graphs, the largest Fréchet distance was found

to be between the second highest performing (2t0, 2t1, 10dist) and lowest performing re-

silience score system configurations.

Fréchet analysis was done in MATLAB using Zachary Danziger (2014)’s file exchange[9].

From Fig. 8, Fréchet distances tended to be larger towards the first ≈ 65 influence

values, including the largest Fréchet distance measured at influence = 45. Towards

the primary slope drop off towards the end of the x-axis, we observe that the Fréchet

distances maintain a lower value, suggesting that independent of system configuration, a

similar drop off can be expected.

15



References

[1] Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Con-

nected Learning and Computer-Based Modeling, Northwestern University, Evanston,

IL.

[2] Wieland, A. and Durach, C.F. (2021), Two perspectives on sup-

ply chain resilience. J Bus Logist, 42: 315-322. https://doi-

org.turing.library.northwestern.edu/10.1111/jbl.12271

[3] S. Chen, K. Tai and Z. Li, ”Evaluation of supply chain resilience enhancement with

multi-tier supplier selection policy using agent-based modeling,” 2016 IEEE Interna-

tional Conference on Industrial Engineering and Engineering Management (IEEM),

Bali, Indonesia, 2016, pp. 124-128, doi: 10.1109/IEEM.2016.7797849.

[4] Posit team (2024). RStudio: Integrated Development Environment for R. Posit Soft-

ware, PBC, Boston, MA. URL http://www.posit.co/.

[5] Statistics Kingdom.(2017).Multiple Linear Regression Calculator. (May 30, 2024)[web

application]. https://www.statskingdom.com/410multilinearregression.html

[6] Lizao Li et al. ,Generative emulation of weather forecast ensembles with diffusion

models.Sci. Adv.10,eadk4489(2024).DOI:10.1126/sciadv.adk4489

[7] Samuel H. Huang, Sunil K. Sheoran, Harshal Keskar, Computer-assisted supply chain

configuration based on supply chain operations reference (SCOR) model, Computers

& Industrial Engineering, Volume 48, Issue 2, 2005, Pages 377-394, ISSN 0360-8352,

https://doi.org/10.1016/j.cie.2005.01.001.

[8] Tim Wylie, Binhai Zhu, Following a curve with the discrete Fréchet distance,

Theoretical Computer Science, Volume 556, 2014, Pages 34-44, ISSN 0304-3975,

https://doi.org/10.1016/j.tcs.2014.06.026.

[9] Zachary Danziger (2024). Discrete Frechet Distance

(https://www.mathworks.com/matlabcentral/fileexchange/31922-discrete-frechet-

distance ), MATLAB Central File Exchange.

16


